Estimating Standard Errors for the Parks Model: Can Jackknifing Help?

نویسندگان

  • W. Robert Reed
  • Rachel S. Webb
چکیده

Non-spherical errors, namely heteroscedasticity, serial correlation and crosssectional correlation are commonly present within panel data sets. These can cause significant problems for econometric analyses. The FGLS(Parks) estimator has been demonstrated to produce considerable efficiency gains in these settings. However, it suffers from underestimation of coefficient standard errors, oftentimes severe. Potentially, jackknifing the FGLS(Parks) estimator could allow one to maintain the efficiency advantages of FGLS(Parks) while producing more reliable estimates of coefficient standard errors. Accordingly, this study investigates the performance of the jackknife estimator of FGLS(Parks) using Monte Carlo experimentation. We find that jackknifing can—in narrowly defined situations—substantially improve the estimation of coefficient standard errors. However, its overall performance is not sufficient to make it a viable alternative to other panel data estimators. JEL C23, C15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل معادلات برآوردکننده مدل‌های رگرسیون با اندازه خطای تصادفی روی متغیر مستقل به روش بهینه سازی

Measurements of some variables in statistical analysis are often encountered with random errors. Therefore, investigating of the effects of these errors seems to be important. This event in regression analysis seems to be more necessary. Because the aim of the fitting a regression model is estimating the effect of an independent variable on a response variable. Then measurements of an independe...

متن کامل

Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting.

The potential for bias due to misclassification error in regression analysis is well understood by statisticians and epidemiologists. Assuming little or no available data for estimating misclassification probabilities, investigators sometimes seek to gauge the sensitivity of an estimated effect to variations in the assumed values of those probabilities. We present an intuitive and flexible appr...

متن کامل

Department of Economics College of Business and Economics University of Canterbury Christchurch, New Zealand Another Look at What to Do with Time-series Cross-section Data

Our study revisits Beck and Katz’ (1995) comparison of the Parks and PCSE estimators using time-series, cross-sectional data (TSCS). Our innovation is that we construct simulated statistical environments that are designed to approximate actual TSCS data. We pattern our statistical environments after income and tax data on U.S. states from 1960-1999. While PCSE generally does a better job than P...

متن کامل

Safety Analysis of the Patch Load Resistance of Plate Girders: Influence of Model Error and Variability

This study aims to undertake a statistical study to evaluate the accuracy of nine models that have been previously proposed for estimating the ultimate resistance of plate girders subjected to patch loading. For each model, mean errors and standard errors, as well as the probability of underestimating or overestimating patch load resistance, are estimated and the resultant values are compared o...

متن کامل

On Presentation a new Estimator for Estimating of Population Mean in the Presence of Measurement error and non-Response

Introduction According to the classic sampling theory, errors that are mainly considered in the estimations are sampling errors.  However, most non-sampling errors are more effective than sampling errors in properties of estimators. This has been confirmed by researchers over the past two decades, especially in relation to non-response errors that are one of the most fundamental non-immolation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011